GA and Tabu Search Chae Y. Lee

Foundation of GAs

Genes and Alleles

Alphabet V+ = $\{0, 1, *\}$

H: a schema taken from V+

The order of schema H:

o(H)= number of fixed positions present in the template The defining length of a schema H:

 $\delta(H)$ = distance between the first and last specific string position

m(H,t) = number of particular schema H at time t in
the population A(t)

During reproduction a string A_i is selected with probability

$$p_i = \frac{f_i}{\sum f_j}$$

Effect of Reproduction:

 $m(H,t+1) = m(H,t)\frac{f(H)}{f}$

where f(H) is the average fitness of schema H Above-average schemata grow and below-average schemata die off

$$m(H,t+1) = m(H,t)\frac{(f+cf)}{f} = (1+c)m(H,t)$$
$$m(H,t) = m(H,0)(1+c)^{t}$$

Effect of Crossover:

one-point crossover random selection of a mate random selection of a crossover site

 p_c : crossover rate

p_s : crossover survival probability

$$p_s \ge 1 - p_c \, \frac{\delta(H)}{l-1}$$

Effect of Reproduction + Crossover

$$m(H,t+1) \ge m(H,t) \frac{f(H)}{f} \left[1 - p_c \frac{\delta(H)}{l-1} \right]$$

Assumption: Crossover within the defining length of the schema is always disruptive.

Not true!

Consider a schema 11****.

If a string such as 1110101 were recombined between the first two bits with a string such as 1000000 or 0100000, no disruption occurs in schema 11****.

Also, if 1000000 and 0100000 were recombined exactly between the first and second bit a new offspring becomes a member of 11*****.

$$m(H,t+1) = m(H,t)\frac{f(H)}{f}(1-p_c losses) + p_c gains$$

$$m(H,t+1) \ge m(H,t)\frac{f(H)}{f} \left[1 - p_c \frac{\delta(H)}{l-1} \left(1 - \frac{m(H,t)}{n} \right) \right]$$

Assumption: Selection of the first parent is fitness based and the second parent is chosen randomly.When both parents are chosen based on fitness, the form becomes

$$m(H,t+1) \ge m(H,t)\frac{f(H)}{f} \left[1 - p_c \frac{\delta(H)}{l-1} \left(1 - \frac{m(H,t)}{n} \frac{f(H)}{f}\right)\right]$$

7

Schemata with both above-average observed performance and short defining length are going to be sampled at exponentially increasing rate.

Effect of Reproduction + Crossover + Mutation:

p_m : mutation rate

$$m(H,t+1) \ge m(H,t) \frac{f(H)}{f} \left[1 - p_c \frac{\delta(H)}{l-1} \left(1 - \frac{m(H,t)}{n} \frac{f(H)}{f} \right) \right] \left(1 - p_m \right)^{o(H)}$$

GA and Tabu Search Chae Y. Lee

Schema Theorem

Short,

low-order,

above-average schemata (building blocks)

receive exponentially increasing trials in subsequent generations.

Schema Processing at Work

String Processing Actual Initial Expected Count Population x Value pselect, count from Randomly Unsigned String $\frac{f_i}{\Sigma f}$ $\frac{f_i}{\bar{f}}$ f(x)Roulette No. Generated / Integer x^2 Wheel 0 1 1 0 1 1 0.58 13 169 0.14 1 2 1000 1 24 0.49 1.97 576 2 3 0 1 0 0 0 8 64 0.06 0.22 0 10011 4 19 361 0.31 1.23 1 Sum 1170 1.00 4.004.0 Average 293 0.25 1.001.0 Max 576 0.491.97 2.0 Schema Processing Before Reproduction String Schema Average Representatives Fitness f(H) H_1] * * * * 2,4469 $\dot{H_2}$ 10** 2,3 320 H_3] * * * 0 2 576

TABLE 2.1 GA Processing of Schemata—Hand Calculations

GA and Tabu Search Chae Y. Lee

TABLE 2.1 (Continued)

String Processing

Mating Pool after Reproduction (Cross Site Shown)	Mate (Randomly Selected)	$ \begin{pmatrix} \text{Randomly} \\ \text{Selected} \end{pmatrix} $	New Population	<i>x</i> Value	f(x) x^2
0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1	2 1 4 3	4 4 2 2	$\begin{array}{cccccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array}$	12 25 27 16	144 625 729 256
Sum Average Max					$ \begin{array}{r} 1754 \\ \underline{439} \\ \underline{729} \\ \end{array} $

Aft	er Reproduction	L	After	r All Oper	ators
Expected Count	Actual Count	String Represen- tatives	Expected Count	Actual Count	String Represen- tatives
3.20	3	2,3,4	3.20	3	2,3,4
2.18	2	2,3	1.64	2	2,3
1.97	2	2,3	0.0	1	4

Focus on Schemas

Examples:

	P(t)	f(x)	P(t+1)	f(x)
x1:	011010	1	011010	1
x2:	100111	0	011000	1
x3:	110010	0	000110	3
x4:	011000	1	000110	3
x5:	000110	3	000110	3
x6:	000111	1	000111	1
x7:	110110	0	101001	2
x8:	101001	2	101001	2

Selection Rule: The number of children is proportional to a chromosome's relative performance.

What is the effect on the patterns in the population?

Implicit Parallelism

Theorem: The number of representatives from any *schema* S increases in proportion to the observed relative performance of S.

Let S = 0#####

Let N(S,t) be number of elements of S at t. Then f(S,t) = (1+1+3+1)/4 = 1.5

So, N(S,t+1) = 1.5 * N(S,t)

A large number of schema are processed without explicit computation of utilities.

Why should exponentially increasing samples be given to the observed best building block?

Two-armed bandit problem

Tradeoff between exploitation and exploration

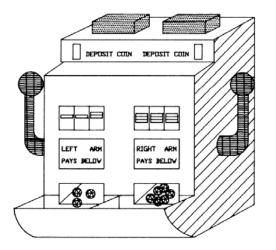


FIGURE 2.1 The two-armed bandit problem poses a dilemma: how do we search for the right answer (exploration) at the same time we use that information (exploitation)?

- n experimentations to each arm for total of N trials,
- q(n): probability that the worst arm is observed the best after n trials on each arm

Expected loss:
$$L(N,n) = |\mu_1 - \mu_2| \cdot [(N-n)q(n) + n(1-q(n))]$$

The optimal experiment size n^*

FIGURE 2.2 The modified total number of trials (c^2N) grows at a greater than exponential function of the modified optimal experiment size (c^2n^*) in the one-shot, decision-theory approach to the two-armed bandit problem.

- To allocate trials optimally (minimal expected loss), we should give slightly more than exponentially increasing trials to the observed best arm.
- We need to allocate exponentially increasing numbers to the observed best schemata.
- Building blocks receive exponentially increasing trials in future generations.

- GA can be thought of the composition of many k-armed bandits.
- A set of eight schemata that competes at three positions in the strings of length seven is eight-armed bandit problem. With three positions fixed over a string of length seven, there are 35 of the eight-armed bandit problems.

*	0	0	*	0	*	*	
*	0	0	*	1	*	*	
*	0	1	*	0	*	*	
*	0	1	*	1	*	*	
*	1	0	*	0	*	*	
*	1	0	*	1	*	*	
*	1	1	*	0	*	*	
*	1	1	*	1	*	*	

GA and Tabu Search Chae Y. Lee How many schemata are processed usefully?

- The number of schemata processed in a string population with length *l* and size *n* is somewhere between 2^l and $n2^l$.
- Not all of these schemata are processed with high probability because crossover destroys those with relatively long defining lengths.
- What is the lower bound on those schemata that are processed in a useful manner - those that are sampled at the desirable exponentially increasing rate?

The number of schemata is proportional to n^3 .

GA and Tabu Search Chae Y. Lee How many schemata are processed usefully?

- The number of schemata is proportional to n^3 .
 - Consider schemata with defining length $l_s < \varepsilon(l-1)+1$.
 - Total number schemata of length l_s or less in a particular string: $2^{ls-1}(l-l_s+1)$
 - The number of such schemata in the whole population:

 $n2^{ls-1}(l-l_s+1)$

- Pick a population size $n=2^{ls/2}$: one or fewer of all schemata is of order $l_s/2$ or more
- If we count only one half of the schemata that have higher order than $l_s/2$,

$$n_s \ge n(l-l_s+1)2^{l_s-2} = (l-l_s+1)\frac{n^3}{4}$$

GA and Tabu Search Chae Y. Lee How many schemata are processed usefully?

Despite the disruption of long, high-order schemata by crossover and mutation, GAs inherently process a large quantity of schemata while processing a relatively small quantity of strings.

The Building Block Hypothesis

Implicit Parallelism + Crossover Effect

- Short and low-order and highly fit schemata are sampled, recombined, and resampled to form strings of potentially higher fitness.
- It is claimed that building blocks combine to form better strings. It seems reasonable, but do we have any evidence?
- Walsh-schemata transform: Bethke (1981) and Holland (1987)
 - Given a particular function and coding, building block combine to form optima or near optima.

The Building Block Hypothesis

- The five-bit coding example for regularity implied in building block processing
 - $H_1 = 1^{****}$ and $H_2 = 0^{****}$ (See Figure 2.3)
 - $H_1 = ****1$ and $H_2 = ****0$ (See Figure 2.4)
 - $H_1 = 10^{***}$ and $H_2 = 11^{***}$ (See Figure 2.6)

The periodicity permits the Walsh function analysis and the analysis determine the expected static performance of GA.

GA and Tabu Search Chae Y. Lee

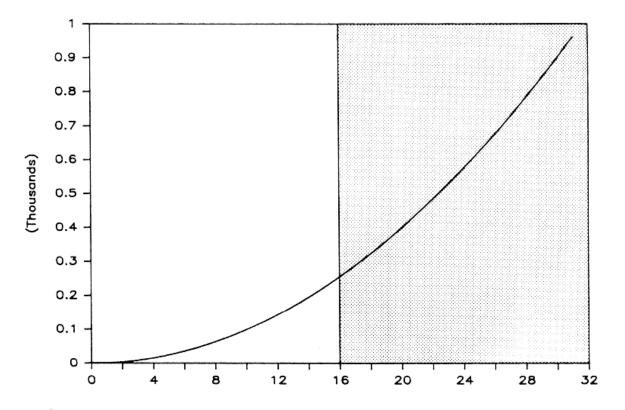


FIGURE 2.3 Sketch of schema 1**** overlaying the function $f(x) = x^2$.

GA and Tabu Search Chae Y. Lee

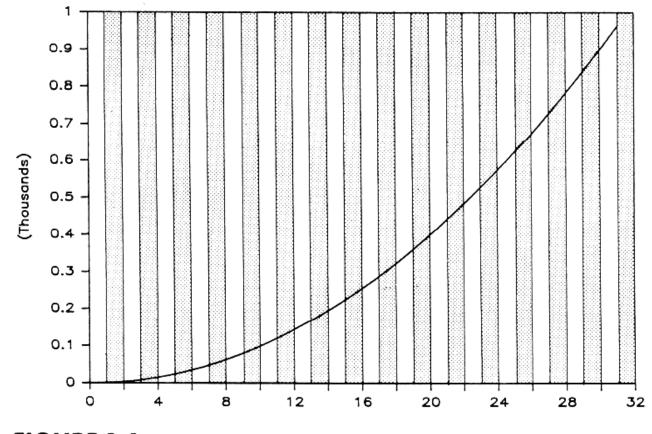


FIGURE 2.4 Sketch of schema ****1.

GA and Tabu Search Chae Y. Lee

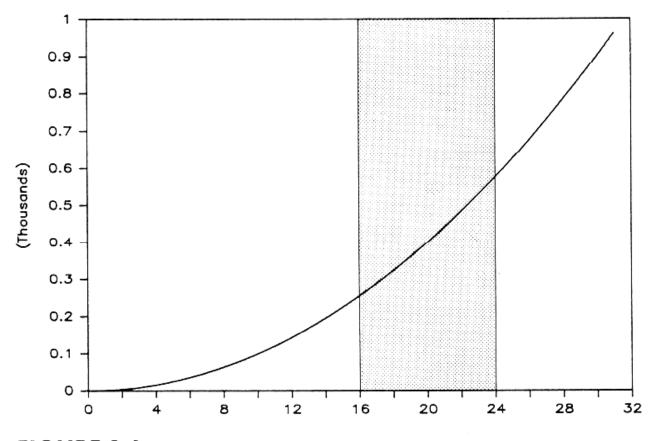


FIGURE 2.6 Sketch of schema 10***.

The Building Block Hypothesis

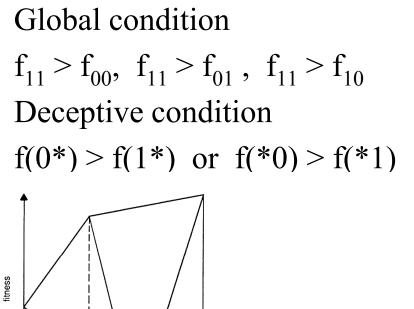
- Generalization of the result to arbitrary codings and functions has proved difficult.
- A number of test cases that are provably misleading for the simple three-operator GA: GA-deceptive problems
- Simple GA depends upon the recombination of building blocks to seek the best points.
- Royal Road Functions by Mitchel, Holland and Forrest.

The Minimal Deceptive Problem

- What makes a problem difficult for a simple GA?
- The simplest problem that causes a GA to diverge from the global optimum.
- The problem that violates the building block hypothesis: the short, low-ordered building blocks lead to incorrect longer, higher order building blocks.
- Despite the effort to fool a simple GA, it is surprising that the GA-deceptive problem is not usually GAhard (does not usually diverge from the global optimum).

The Minimal Deceptive Problem

Problem Construction: Deceptive two-bit problem



×	*	*	0	*	×	*	¥	*	0	*	$f_{_{00}}$
*	*	*	0	*	×	×	¥	*	1	×	f_{01}^{-1}
*	*	*	1	*	*	*	*	*	0	×	${f}_{10}$
¥	*	×	1	*	*	*	×	*	1	*	f_{11}
			 	_	δ	(H)	_	>		

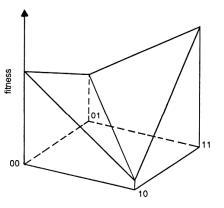


FIGURE 2.8 Sketch of Type I, minimal deceptive problem (MDP) $f_{01} > f_{00}$.

FIGURE 2.9 Sketch of Type II, minimal deceptive problem (MDP) $f_{00} > f_{01}$.

The Minimal Deceptive Problem

Epistasis: Nonlinearity (dominant/recessive gene) among the four points in each case. cannot be expressed as $f(x_1,x_2)=\Sigma a_i x_i + b$ Deceptive three-bit problem (Appendix E) GA and Tabu Search Chae Y. Lee Schema Analysis of the Two-bit Problem

- In the two-bit problem, a schema is not lost even if a crossover occurs between the schema's outermost defining bits.
- See Table 2.2.
- Computation of the expected proportion P of each of the four competing schemata.
- MDP result
 - The Type I MDP is not GA-hard (See Figure 2.10).
 - The Type II MDP converge to the best solution for most starting conditions (See Figures 2.11, 2.12).

TABLE 2.2 Crossover Yield Table in Two-Bit Prob
--

Х	00	01	10	11
00	S	S	S	01 10
01	S	S	00 11	S
10	S	$\begin{array}{c} 00\\11\end{array}$	S	S
11	01 10	S	S	S

GA and Tabu Search Chae Y. Lee

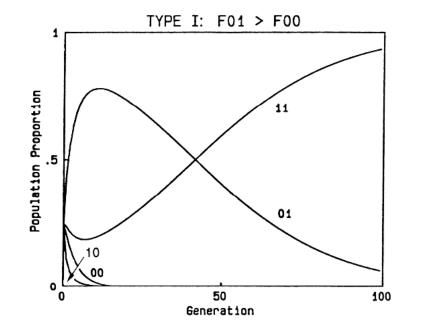


FIGURE 2.10 Numerical solution of a Type I, minimal deceptive problem (MDP): r = 1.1, c = 1.05, c' = 0.0.

GA and Tabu Search Chae Y. Lee

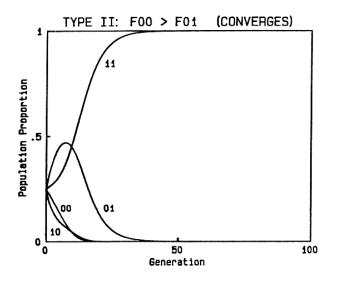


FIGURE 2.11 Numerical solution of a Type II, minimal deceptive problem that converges: r = 1.1, c = 0.9, c' = 0.5 with equal initial proportions.

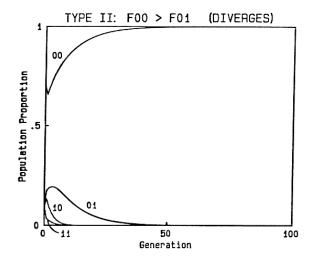


FIGURE 2.12 Numerical solution of a Type II, minimal deceptive problem that diverges: r = 1.1, c = 0.9, c' = 0.5 with unequal initial proportions.

33

Schemata as Hyperplanes

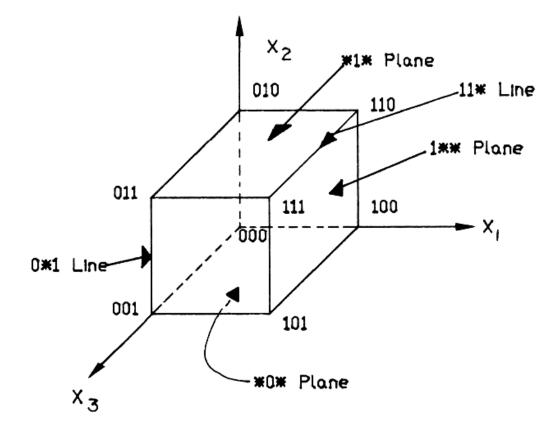


FIGURE 2.13 Visualization of schemata as hyperplanes in three-dimensional space.