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Live and Die: The fundamental Theorem

Genes and Alleles
Alphabet V+ = {0, 1, *}
H: a schema taken from V+
The order of schema H:
o(H)= number of fixed positions present in the template

The defining length of a schema H:

O(H)= distance between the first and last specific string
position
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Live and Die: The fundamental Theorem

m(H,t) = number of particular schema H at time t in
the population A(t)

During reproduction a string A. 1s selected with
probability
f

pi:ij
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Live and Die: The fundamental Theorem

Effect of Reproduction:
m(H,t+1)=m(H ,t)—f (fH)
where f(H) is the average fitness of schema H

Above-average schemata grow and below-average
schemata die off

m(H.t+1)=m(H, U+

=(I+c)m(H,1)

m(H,t)=m(H,0)1+c)'
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Live and Die: The fundamental Theorem

Effect of Crossover:

one-point crossover

random selection of a mate

random selection of a crossover site
p. : crossover rate

p, : crossover survival probability

o(H)

> 1 -
ey

Effect of Reproduction + Crossover

5(H)}

m(H,t+1)>m(H, t)f(fH)[ P. -
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Live and Die: The fundamental Theorem

Assumption: Crossover within the defining length of
the schema 1s always disruptive.

Not true!
Consider a schema 11 *****

If a string such as 1110101 were recombined between
the first two bits with a string such as 1000000 or
0100000, no disruption occurs 1n schema 11%***%*%*,

Also, 1f 1000000 and 0100000 were recombined
exactly between the first and second bit a new
offspring becomes a member of 1 1%%%%*,
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Live and Die: The fundamental Theorem

m(H,t+1)=m(H,t) ( )(1— p.losses) + p.gains

m(H,t+1) > m(H,t) f(fH){ p, 2 (1— m(':’t)ﬂ

Assumption: Selection of the first parent is fitness
based and the second parent 1s chosen randomly.

When both parents are chosen based on fitness, the
form becomes
f(H) o(H)

m(H,t+1)>m(H, t){ pCﬁﬁl_

m(H,t) f(H)ﬂ

n f
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Live and Die: The fundamental Theorem

Schemata with both above-average observed
performance and short defining length are going to
be sampled at exponentially increasing rate.

Effect of Reproduction + Crossover + Mutation:

p,, : mutation rate

m(H.t+1)> m(H,t)f(fI_I){l_ p°5|(_H1)£1‘ uGl f(fH)ﬂ(l_ o
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Schema Theorem

Short,
low-order,
above-average schemata (building blocks)

receive exponentially increasing trials in subsequent
generations.
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TABLE 2.1 GA Processing of Schemata—Hand Calculations
String Processing
- Actual
[nma! Expected Count
Population x Value pselect, count from
String Randomly Unsigned fx) S Ji Roulette
No Generated Integer x° 2f f Wheel
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 y
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4.0
Average 293 0.25 1.00 1.0
Max 576 0.49 1.97 2.0
Schema Processing
Before Reproduction
String Schema Average
Representatives Fitness A H)
H, 1 * % % % 24 469
H, * 1 0 * ¥ 2,3 320
H, 1 % * %0 2 576
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TABLE 2.1 (Continued)
String Processing
Mating Pool after Mate Crossover Site
Reproduction Randomly Randomly New X fx)
(Cross Site Shown) Selected Selected Population  Value x?
01101 2 4 01100 12 144
1100]0 1 4 11001 25 625
11/]000 4 2 11011 27 729
10/011 3 2 10000 16 256
Sum 1754
Average 439
Max 729
Schema Processing
After Reproduction After All Operators
String String
Expected Actual Represen- Expected  Actual Represen-
Count Count tatives Count Count tatives
3.20 3 2,34 3.20 3 234
2.18 2 2,3 1.64 2 2,3
1.97 2 2,3 0.0 1 4
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Focus on Schemas

Examples:

P(t) f(x) P(t+1) f(x)
x1: 011010 1 011010 1
x2: 100111 0 011000 1
x3: 110010 0 000110 3
x4: 011000 1 000110 3
x5: 000110 3 000110 3
x6: 000111 1 000111 1
x7: 110110 0 101001 2
x8: 101001 2 101001 2

Selection Rule: The number of children 1s proportional
to a chromosome’s relative performance.

What 1s the effect on the patterns in the population?

12
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Implicit Parallelism

Theorem: The number of representatives from any
schema S increases in proportion to the observed
relative performance of S.

Let S = O#####
Let N(S,t) be number of elements of S at t.
Then f(S,t) = (1+1+3+1)/4=1.5
So, N(S,t+1) = 1.5 * N(S,t)

A large number of schema are processed without
explicit computation of utilities.

13
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The Two-Armed and K-Armed Bandit Problem

Why should exponentially increasing samples be
given to the observed best building block?

Two-armed bandit problem

Tradeoff between exploitation and exploration

FIGURE 2.1 The two-armed bandit problem poses a dilemma: how do we
search for the right answer (exploration) at the same time we use that informa-
tion (exploitation)?
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The Two-Armed and K-Armed Bandit Problem

n experimentations to each arm for total of N trials,

q(n): probability that the worst arm 1s observed the
best after n trials on each arm

Expected loss: L(N,n) = ‘/11 —,uz‘ [(N —n)g(n)+n(l— q(n))]

.
30
10

The optimal experiment size n*

¢’N
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FIGURE 2.2 The modified total number of trials (c*N) grows at a greater than
exponential function of the modified optimal experiment size (c’n*) in the one-
shot, decision-theory approach to the two-armed bandit problem.



GA and Tabu Search
Chae Y. Lee

The Two-Armed and K-Armed Bandit Problem

To allocate trials optimally (minimal expected loss),
we should give slightly more than exponentially
increasing trials to the observed best arm.

We need to allocate exponentially increasing numbers
to the observed best schemata.

Building blocks receive exponentially increasing trials
in future generations.
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The Two-Armed and K-Armed Bandit Problem

GA can be thought of the composition of many k-
armed bandits.

A set of eight schemata that competes x 00 *0 * ¥
at three positions in the strings of lengtt , | | . . . .
seven 1s eight-armed bandit problem. i E Tl

With three positions fixed over a string . | 4 » ; «
of length seven, there are 35 of the ; i 1 ' {i "

eight-armed bandit problems.
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How many schemata are processed usefully?

The number of schemata processed 1n a string
population with length | and size n is somewhere
between 2! and n2/.

Not all of these schemata are processed with high
probability because crossover destroys those with
relatively long defining lengths.

What 1s the lower bound on those schemata that are
processed in a useful manner - those that are sampled
at the desirable exponentially increasing rate?

The number of schemata is proportional to n’.

18
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How many schemata are processed usefully?

The number of schemata is proportional to n’.
Consider schemata with defining length |, <e(l-1)+1 .
Total number schemata of length | or less in a particular
string: 211(1-1+1)

The number of such schemata in the whole population:
n2is-1(1-1.+1)

Pick a population size n=2!52: one or fewer of all schemata
is of order |,/2 or more

If we count only one half of the schemata that have higher
order than | /2,

3
no>n(l =1 +1)2% 2 =(1 -1, +1)”?
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How many schemata are processed usefully?

Despite the disruption of long, high-order schemata by
crossover and mutation, GAs inherently process a
large quantity of schemata while processing a
relatively small quantity of strings.

20



GA and Tabu Search
Chae Y. Lee

The Building Block Hypothesis

Implicit Parallelism + Crossover Effect

Short and low-order and highly fit schemata are
sampled, recombined, and resampled to form strings
of potentially higher fitness.

It 1s claimed that building blocks combine to form
better strings. It seems reasonable, but do we have
any evidence?

Walsh-schemata transform: Bethke (1981) and
Holland (1987)

Given a particular function and coding, building block
combine to form optima or near optima.

21
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The Building Block Hypothesis

The five-bit coding example for regularity implied in
building block processing
H, = 1**** and H, =0**** (See Figure 2.3)
H, =****] and H, =****0 (See Figure 2.4)
H, =10*** and H,=11*** (See Figure 2.6)

The periodicity permits the Walsh function analysis
and the analysis determine the expected static
performance of GA.
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FIGURE 2.3 Sketch of schema 1**** overlaying the function f{x) = x
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FIGURE 2.4 Sketch of schema ****1.
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FIGURE 2.6 Sketch of schema 10***,
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The Building Block Hypothesis

Generalization of the result to arbitrary codings and
functions has proved difficult.

A number of test cases that are provably misleading
for the simple three-operator GA: GA-deceptive
problems

Simple GA depends upon the recombination of
building blocks to seek the best points.

Royal Road Functions by Mitchel, Holland and
Forrest.

26
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The Minimal Deceptive Problem

What makes a problem difficult for a simple GA?

The simplest problem that causes a GA to diverge
from the global optimum.

T
hypothesis: the short, low-ordered building blocks
lead to incorrect longer, higher order building blocks.

e problem that violates the building block

Despite the effort to fool a simple GA, it 1s surprising
that the GA-deceptive problem 1s not usually GA-
hard (does not usually diverge from the global
optimum).

27
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The Minimal Deceptive Problem

Problem Construction: Deceptive two-bit problem

Global condition

¥R X Q¥ X X X X0 X [

fll >f00, fll >f01 ’ fll >f10 E O O #* X N K % l £ f{;]

. . o * ¥ ¥ l 3O ¥ X X O % fUJ.

Deceptive condition sl EE B
f(0*) > f(1*) or f(*0) > f(*1) [~ B(H) -

fithess

00

FIGURE 2.9 Sketch of Type II, minimal deceptive problem (MDP) f,, = f,.
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FIGURE 2.8 Ssketch of Type I, minimal deceptive problem (MDP) f,, = f,.
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The Minimal Deceptive Problem

Epistasis: Nonlinearity (dominant/recessive gene)
among the four points in each case.

cannot be expressed as f(x;,Xx,)=xax, + b
Deceptive three-bit problem (Appendix E)
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Schema Analysis of the Two-bit Problem

In the two-bit problem, a schema 1s not lost even if a
crossover occurs between the schema's outermost
defining bits.

See Table 2.2.

Computation of the expected proportion P of each of
the four competing schemata.

P result
The Type I MDP 1s not GA-hard (See Figure 2.10).

The Type II MDP converge to the best solution for most
starting conditions (See Figures 2.11, 2.12).
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TABLE 2.2 Crossover Yield Table in Two-Bit Problem

X 00 01 10 11
: . : 01
00 S S S 10
00
. L-‘ l (,’
01 S S 1]
. : 00 , :
10 S 11 S S
01 : : .
11 10 S S S
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TYPE I. FO1 > FOO
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FIGURE 2.10 Numerical solution of a Type I, minimal deceptive problem
(MDP): r = 1.1, ¢ = 1.05,¢' = 0.0.
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TYPE II: FOO > FO1 (CONVERGES)

Population Proportion

o i
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FIGURE 2.11 Numerical solution of a Type II, minimal deceptive problem that
converges: r = 1.1, ¢ = 0.9, ¢’ = 0.5 with equal initial proportions.
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FIGURE 2.12 Numerical solution of a Type II, minimal deceptive problem that
diverges: » = 1.1, ¢ = 0.9, ¢’ = 0.5 with unequal initial proportions.
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Schemata as Hyperplanes
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FIGURE 2.13 Visualization of schemata as hyperplanes in three-dimensional
space.
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